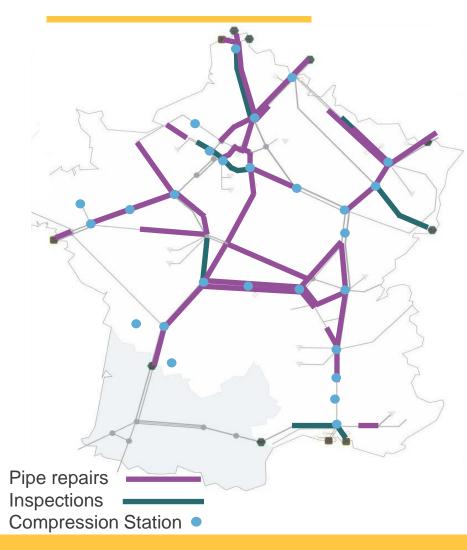


2025 Maintenance Schedule

Summary

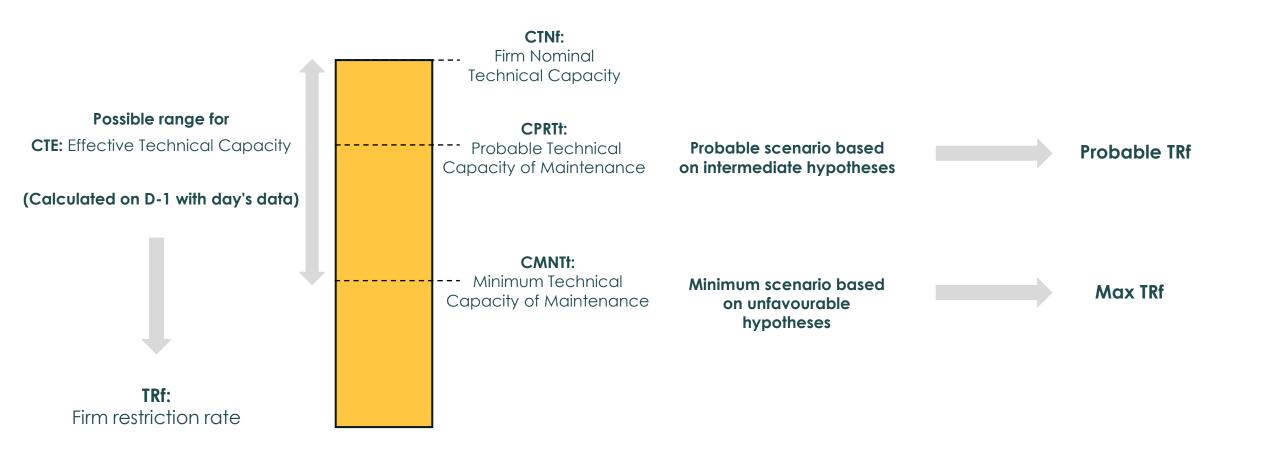

- 1. Presentation of the 2025 maintenance schedule
- 2. Understand recent developments in work impacts
- 3. Levers to reduce the impact of the maintenance schedule
- 4. Decoding: A better reading of your available capacity
- 5. Conclusion and Q&A

Presentation of the 2025 maintenance schedule

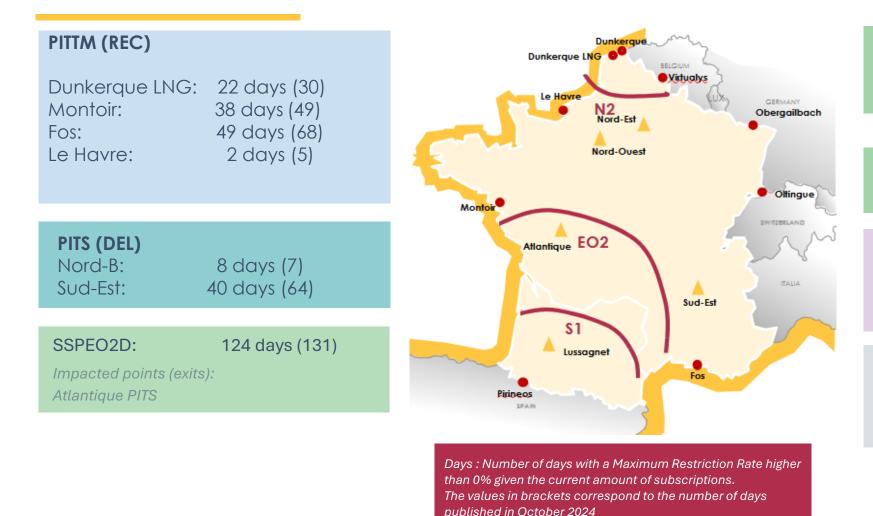
Work to ensure the security and sustainability of the network

Periodic **inspections** which limit the flow in the pipeline to allow the passage of instrumented pistons \rightarrow **Identify potential defects**

Pipe repair, over several years, with an impact on flow rate and pressure that varies depending on the nature of the defects to be addressed \rightarrow **Confirm potential faults** and **repair** them



Regular maintenance and work programs to maintain, repair, adapt and develop the various infrastructures of our network


Operations which may result in restrictions on the use of subscribed capacities

Understanding restrictions

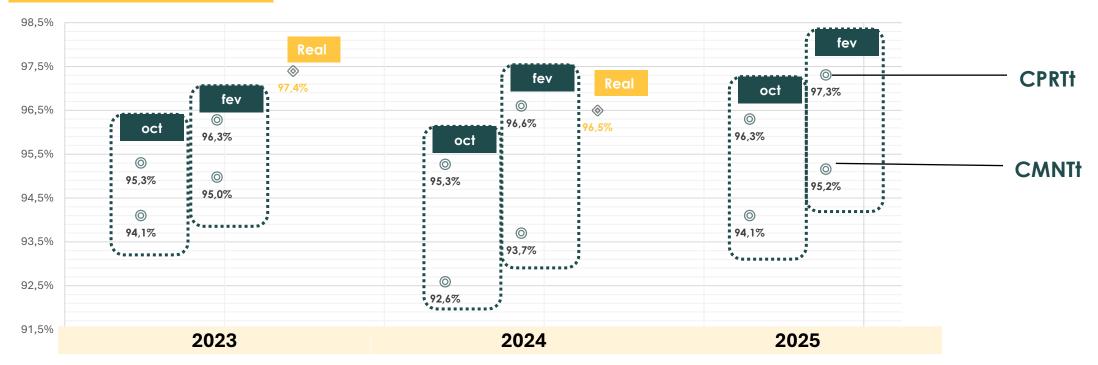
The maintenance schedule at a glance

SPN2U: 12 days (12)

Impacted points (entries): Dunkerque LNG, Dunkerque, Virtualys

148 days will be with a 0% restriction, As a reminder, the UIOLI is open on these days

PIR (REC)


Dunkerque: 2 days (55) Obergailbach: 16 days (9)

PIR (DEL)

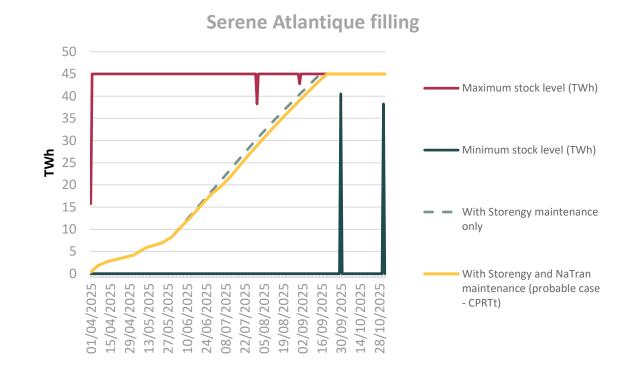
Virtualys: 25 days (50) Oltingue: 51 days (50)

nalran

Greater capacity availability in 2025

Subscribed capacity availability – calculated on all TRF entry and exit points, including the impact on Teréga's points For PITS: hypothesis of subscription of all volumes put up for sale by storage operators

- Better availability of firm subscribed capacity than the first version published in October 2024 thanks to optimised maintenance
- The availability rate is better than in the last two years

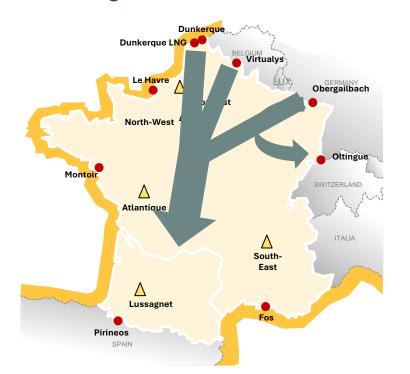

A tool to model the impact of restrictions on the filling of your storage products

On a global scale, it makes it possible to verify that restrictions on injections allow storage to be filled

	With Storengy and NaTran maintenance (probable case - CPRTt)		
	100% date	Days of flexibility	
Serene Atlantique	21/09/2025	40	
Serene Nord	14/09/2025	47	
Sediane Nord	17/09/2025	44	
Saline	30/10/2025	1	

Assumptions

- Stock at 0 on April 1st
- Subscription of all storage volumes marketed by Storengy
- Daily use of all available capacity
- Does not take into account potential network congestion
- Does not take into account superpoint flexibilities


2025 Maintenance schedule

Understand recent developments in work impacts

New flow patterns

Gas flow configuration before the war in Ukraine

- A diversity of supply sources in the North
- A short and direct gas route to supply the Oltingue exit
- \rightarrow Northern works that can remain transparent for shippers

- Dunkerque and Dunkerque LNG become the majority sources of supply in the North
- New supply schemes, less direct and more structures crossed
- \rightarrow Northern works involving capacity restrictions

The strengthening of the multifluid decree in 2021 (AMF)

AMF : A regulatory requirement since 2006 to permanently maintain the network's serviceability and a satisfactory level of safety

	Until June 2021	Since July 2021 (modified AMF from May 2020)	
Inspection frequency	10, 15 or 20 years	10 years	
Nb of km inspected by piston per year on average	800 km/year	1 350 km/year	
main network and regional network			

- The number of inspections/year may vary from one year to the next due to the recalibration of inspections to comply with the new regulatory deadlines for pipelines
- Since each inspection is followed by pipe repairs, an increase in unavailability, during the pipe repairs phase, is to be expected in the following years

Reducing methane emission on our network

	NaTran commitment (since 2020)	European regulation (July 2024)
Adaptation of compression stations	Treatment of the most emitting stations \rightarrow 5 stations over 2021-2024	Treatment of all stations
	\checkmark Total unavailability per station ~ 2 weeks	
Releases during work	Pressure reduction, use of gas booster and flaring as a complement \rightarrow 98% of gas recovered in 2023	Strict restriction on venting and widespread use of gas boosters
	X Extension of unavailability (~ 1 to 2 days)	
Leak detection and treatment	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Repairs under tight deadlines
	✗ Low impact of works	Research to minimize work impacts

Levers to reduce the impact of the maintenance schedule

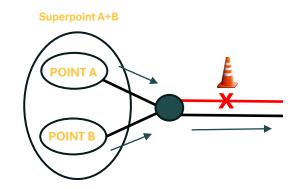
Superpoint: Greater flexibility and capacity

Superpoints can increase your flexibility and your capacities in 3 ways in particular

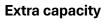
UBI superpoint

Unused capacities are available to all.

BONUS Superpoint


Programming in the opposite direction to the superpoint restriction allows you to nominate more within the same superpoint

Capacity Transfer


This feature gives you flexibility between NaTran's and Teréga's sub-superpoints.

Find all the information you need here:

https://www.natrangroupe.com/sites/default/files/su/superpoints-octobre2024.pdf



2025 : Evolution of TRF works management

A more flexible TRF mechanism, in the hands of the TSOs, to reduce restrictions: the adaptable Small Works threshold

Reminder of the principle of Small Works threshold:

- if impact of maintenance \leq Small Works threshold \rightarrow **No capacity restrictions**
- If congestion \rightarrow treatment via the congestion management mechanisms

New in 2025 : Threshold at 120 GWh/d on SPEO2D instead of 30 GWh/d

85 days : Number of restriction days « avoided » thanks to the mesure


Decoding: A better reading of your available capacity

3 parameters that can change the restriction rate

Zoom on the EO2D superpoint impacting the Atlantic, Lussagnet injections and the Pirineos exit

Decoding

- Why does this parameter play a role in the calculation of the restriction rate ?
- What are the assumptions taken into account in the maintenance schedule ?
- How can the restriction rate change depending on the conditions of the day ?

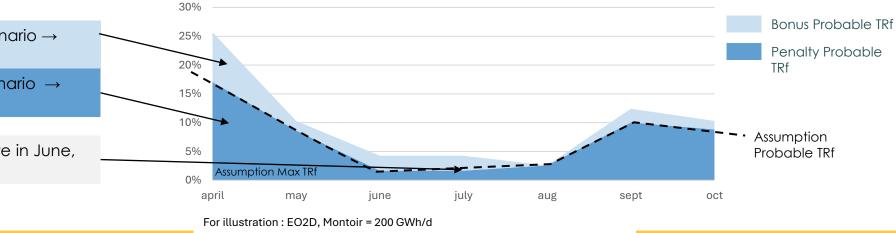
Some prerequisites :

- The influence of the 3 parameters is expressed in relation to the restriction rates of subscrided capacities:
 - Maximum restriction rate \rightarrow Max TRf calculated from the CMNTt
 - Probable restriction rate \rightarrow **Probable TRf** calculated from the CPRTt

Convention :

- **Bonus** on the restriction rate $(+) \rightarrow$ **Release** of the restriction
- **–** Penalty on the restriction rate (-) \rightarrow Strengthening of the restriction
- Disclaimer : the data and graphics are provided for illustrative purposes and are based on specific cases, without generalizable value.

The effect of consumption on capacity availability


Reminder of the principle :

Available exit capacity downstream of the limits = Max transit capacity - Downstream consumption

• For the same work impact, the available capacity will be more constrained in mid-season

Maintenance schedule, what assumptions?

- A cold consumption scenario for Max TRf
- A median consumption scenario for Probable TRf

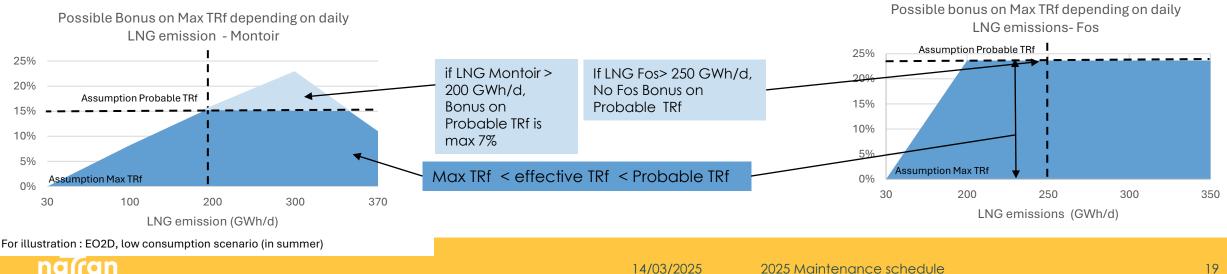
Possible Bonus on Max TRf depending on daily consumption

If daily consumption < median consumption scenario \rightarrow Bonus

If daily consumption > median consumption scenario \rightarrow Penalty

Low impact of consumption on the restriction rate in June, July and August

The impact of LNG on capacity availability



Reminder of the principle :

- Physically, Fos and Montoir are located astride the limit \rightarrow LNG emissions (= gas entry downstream of the limit) help ease the restriction
- The impact of LNG on available capacity may be different depending on the type of work

Maintenance schedule, what assumptions?

- 250 GWh/d in Fos and 200 GWh/d in Montoir for Probable TRf, within the limits of available emission capacities at the terminals (depending on maintenance)
- 30 GWh/d in Fos and Montoir for Max TRf, within the limits of available emission capacities at the terminals (depending on maintenance)

The impact of the works on the availability of capacity

Reminder of the principle :

Maintenance reduces the maximum transit capacity of the network

Maintenance schedule, what assumptions ?

Major impact retained under nominal conditions (reasonable scenario)

Note

- The impact of the work varies significantly depending on the nature of the work.
- The impact on the limit may result from the accumulation of several simultaneous works.
- The work impact may increase and may constitute a penalty on the restriction rate up to D-5.
- . The work impact may evolve until the completion date and may constitute a bonus on the restriction rate.

Conclusion

Conclusion

Less restrictive 2025 maintenance schedule

Regulatory constraints & new flows

Sources of flexibility: superpoints, Small Works threshold A better understanding of capacity availability

Siège social

Immeuble Bora 6, rue Raoul Nordling 92270 Bois-Colombes Tél. : 01 74 65 76 87 contact@natrangroupe.com www.natrangroupe.com

14/03/2025